Chemical Calculations Assignment

Moles and Mass
1.
(a) There is no single right answer for this, but the analogy should clearly relate that a mole is a specific number of objects.
(b) Chemicals always react particle-to-particle, whereas the mass of particles is different for each chemical.
2.
(a) $M_{\mathrm{Na}_{2} \mathrm{CO}_{3}}=2 \times 22.99$

$$
\begin{aligned}
& +12.01 \\
& +3 \times 16.00 \\
& =105.99 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

(b) $M_{\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}}=24.31$

$$
\begin{aligned}
& +2 \times 14.01 \\
& +6 \times 16.00 \\
& =148.33 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

(c) $M_{\mathrm{FeS}_{2} \mathrm{O}_{3} .3 \mathrm{H}_{2} \mathrm{O}}=55.85$
$+2 \times 28.09$
$+3 \times 16.00$
$+3 \times(2 \times 1.008+16.00)$
$=214.078 \mathrm{~g} \mathrm{~mol}^{-1}$
3. $\mathrm{H}_{2} \quad M=2.016 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathrm{O}_{2} \quad M=32.00 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathrm{H}_{2} \mathrm{O} \quad M=18.016 \mathrm{~g} \mathrm{~mol}^{-1}$
4.
(a) $n=\frac{m}{M}=\frac{2.50}{105.99}=0.0236 \mathrm{~mol}$
(b) $M=14.01+(4 \times 1.008)+35.45=53.49 \mathrm{~g} \mathrm{~mol}^{-1}$
$n=\frac{m}{M}=\frac{0.62}{53.49}=0.012 \mathrm{~mol}$
(c) $1 \mathrm{~kg}=1000 \mathrm{~g}$

$$
n=\frac{m}{M}=\frac{1000}{249.66}=4.0 \mathrm{~mol}
$$

5.

(a) $m=n M=1.0 \times 63.01=63 \mathrm{~g}$
(b) $M_{\mathrm{Hg}}=200.6 \mathrm{~g} \mathrm{~mol}^{-1}$
$m=n M=0.0200 \times 200.6=4.01 \mathrm{~g}$
6.
(a) $\frac{n\left(\mathrm{MnO}_{4}^{-}\right)}{n\left(\mathrm{Fe}^{2+}\right)}=\frac{1}{5}$
(b) There are many possible answers to this question, some examples are:

$$
\frac{n\left(\mathrm{MnO}_{4}^{-}\right)}{n\left(\mathrm{Mn}^{2+}\right)}=\frac{1}{1} \quad \frac{n\left(\mathrm{H}^{+}\right)}{n\left(\mathrm{Fe}^{2+}\right)}=\frac{8}{5} \quad \frac{n\left(\mathrm{Fe}^{3+}\right)}{n\left(\mathrm{H}_{2} \mathrm{O}\right)}=\frac{5}{4}
$$

7.

(a) There is more oxygen than needed to exactly react with the CH_{4} present.
(b) CH_{4}
(c) The reaction might be happening in air, which contains a lot of oxygen.
(d) According to the chemical equation, each mole of CH_{4} used up produces one mole of CO_{2}. Since 3.00 moles of CH_{4} are used up, 3.00 moles of CO_{2} must be produced.
(e) $\frac{n\left(\mathrm{H}_{2} \mathrm{O}\right)}{n\left(\mathrm{CH}_{4}\right)}=\frac{2}{1}$
(f) $n\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{2}{1} \times n\left(\mathrm{CH}_{4}\right)=\frac{2}{1} \times 3.00=6.00$ moles
(g) $m=n M=6.00 \times 18.016=108 \mathrm{~g}$
8.
(a) $\frac{n\left(\mathrm{H}_{2}\right)}{n\left(\mathrm{O}_{2}\right)}=\frac{2}{1}$
$\therefore n\left(\mathrm{H}_{2}\right)$ required $=\frac{2}{1} \times n\left(\mathrm{O}_{2}\right)$ present

$$
\begin{aligned}
& =\frac{2}{1} \times 3.6 \\
& =7.2 \mathrm{~mol}
\end{aligned}
$$

There is more H_{2} present (7.4) than required (7.2) so H_{2} is in excess.
(b) Limiting reactant $\left(\mathrm{O}_{2}\right)$ determines quantity produced:

$$
\begin{aligned}
& \frac{n\left(\mathrm{H}_{2} \mathrm{O}\right)}{n\left(\mathrm{O}_{2}\right)}=\frac{2}{1} \\
& \begin{aligned}
\therefore n\left(\mathrm{H}_{2} \mathrm{O}\right) & =\frac{2}{1} \times n\left(\mathrm{O}_{2}\right) \\
& =\frac{2}{1} \times 3.6 \\
& =7.2 \mathrm{~mol}
\end{aligned}
\end{aligned}
$$

