Year 11 Chemistry

Chemical Calculations Assignment

Moles and Mass

1.

(a) There is no single right answer for this, but the analogy should clearly relate that a mole is a specific number of objects.

SOLUTIONS

(b) Chemicals always react particle-to-particle, whereas the mass of particles is different for each chemical.

2.

(a)
$$M_{\text{Na}_2\text{CO}_3} = 2 \times 22.99$$

+12.01
+3×16.00
=105.99 g mol⁻¹

(b)
$$M_{\text{Mg(NO}_3)_2} = 24.31 + 2 \times 14.01 + 6 \times 16.00 = 148.33 \text{ g mol}^{-1}$$

(c)
$$M_{\text{FeSi}_2\text{O}_3.3\text{H}_2\text{O}} = 55.85$$

 $+2 \times 28.09$
 $+3 \times 16.00$
 $+3 \times (2 \times 1.008 + 16.00)$
 $= 214.078 \text{ g mol}^{-1}$

3.
$$H_2$$
 $M = 2.016 \text{ g mol}^{-1}$
 O_2 $M = 32.00 \text{ g mol}^{-1}$
 H_2O $M = 18.016 \text{ g mol}^{-1}$

4

(a)
$$n = \frac{m}{M} = \frac{2.50}{105.99} = 0.0236 \text{ mol}$$

(b)
$$M = 14.01 + (4 \times 1.008) + 35.45 = 53.49 \text{ g mol}^{-1}$$

$$n = \frac{m}{M} = \frac{0.62}{53.49} = 0.012 \text{ mol}$$

(c)
$$1 \text{ kg} = 1000 \text{ g}$$

$$n = \frac{m}{M} = \frac{1000}{249.66} = 4.0 \text{ mol}$$

5.

(a)
$$m = nM = 1.0 \times 63.01 = 63 \text{ g}$$

(b)
$$M_{\text{Hg}} = 200.6 \text{ g mol}^{-1}$$

 $m = nM = 0.0200 \times 200.6 = 4.01 \text{ g}$

6.

(a)
$$\frac{n\left(\text{MnO}_4^{-}\right)}{n\left(\text{Fe}^{2+}\right)} = \frac{1}{5}$$

(b) There are many possible answers to this question, some examples are:

$$\frac{n\left(\mathrm{MnO_4}^{-}\right)}{n\left(\mathrm{Mn}^{2+}\right)} = \frac{1}{1} \qquad \frac{n\left(\mathrm{H}^{+}\right)}{n\left(\mathrm{Fe}^{2+}\right)} = \frac{8}{5}$$

$$\frac{n(\mathrm{H}^+)}{n(\mathrm{Fe}^{2+})} = \frac{8}{5}$$

$$\frac{n(\text{Fe}^{3+})}{n(\text{H}_2\text{O})} = \frac{5}{4}$$

7.

(a) There is more oxygen than needed to exactly react with the CH₄ present.

(b) CH₄

(c) The reaction might be happening in air, which contains a lot of oxygen.

(d) According to the chemical equation, each mole of CH₄ used up produces one mole of CO₂. Since 3.00 moles of CH₄ are used up, 3.00 moles of CO₂ must be produced.

(e)
$$\frac{n(H_2O)}{n(CH_4)} = \frac{2}{1}$$

(f)
$$n(H_2O) = \frac{2}{1} \times n(CH_4) = \frac{2}{1} \times 3.00 = 6.00$$
 moles

(g)
$$m = nM = 6.00 \times 18.016 = 108 \text{ g}$$

8.

(a)
$$\frac{n(H_2)}{n(O_2)} = \frac{2}{1}$$

∴
$$n(H_2)$$
 required = $\frac{2}{1} \times n(O_2)$ present
= $\frac{2}{1} \times 3.6$
= 7.2 mol

There is more H_2 present (7.4) than required (7.2) so H_2 is in excess.

(b) Limiting reactant (O₂) determines quantity produced:

$$\frac{n(\mathrm{H_2O})}{n(\mathrm{O_2})} = \frac{2}{1}$$

$$\therefore n(H_2O) = \frac{2}{1} \times n(O_2)$$
$$= \frac{2}{1} \times 3.6$$
$$= 7.2 \text{ mol}$$